Skip to content
Bits&Chips
×
×
Memberships
Advertising
Magazines
Videos
Contact

Log in

Jan Bosch is a research center director, professor, consultant and angel investor in startups. You can contact him at jan@janbosch.com.

Opinion

The AI-driven company: the kaizen AI generator

6 October 2025
Reading time: 5 minutes

The kaizen AI generator stage is based on the principle that systems should never stand still but continuously adapt and improve, explains Jan Bosch.

In this series, we’ve explored the journey toward the AI-driven company. First, we looked at the business process view and recently, we’ve focused on the R&D process. Here, we see an evolution from AI assistants to compensators, superchargers and finally system generators. Each stage represents a deeper integration of AI into how we design, build and deliver software-intensive systems.

The final step in this maturity ladder is the kaizen AI generator. Borrowing from the Japanese concept of kaizen, meaning “continuous improvement,” this stage goes beyond creating a system once. Instead, the AI agent team remains engaged, constantly monitoring, experimenting and regenerating the system to ensure it improves itself over time.

Whereas the AI system generator focuses on producing a complete, tested and documented system from an initial prompt, the kaizen AI generator takes it a step further. It stays active after deployment, embedded into the lifecycle of the system. In many ways, the AI agents that make up the solution are part of the system, not outside it. They don’t just hand over a product; they act as co-creators and custodians of performance. They continuously gather feedback, test new approaches and regenerate components to keep the system aligned with business goals and operational realities.

Although no companies in our interview study had reached this stage in their AI R&D maturity, several discussed different aspects of what a kaizen AI generator would incorporate. There are several aspects we’ll discuss, including monitoring, experimentation, regeneration and self-healing.

First, for a set of AI agents to continuously improve the system they’re responsible for, it’s necessary to continuously monitor the system. This means that AI agents track performance metrics, user behaviors and external conditions in real-time. It allows these agents to identify opportunities for improvement and detect early signs of degradation. It also lets them identify situations or contexts where the system performs mediocre and develop specific solutions for those situations.

The second aspect is concerned with experimentation at scale. We typically lack the models and theories to predict the impact of changes before we implement them. However, the impact might be negative and we don’t want everyone to be negatively affected by changes with negative outcomes. The best approach to addressing this is to employ experimentation. Like digital scientists, kaizen AI generators design and run experiments to explore alternative ways of realizing functionality. Typical techniques that humans already use and that AI agents will also employ include A/B tests, simulations and reinforcement learning to validate improvements.

As the AI agents continuously seek to improve the system, they’ll need to regenerate code frequently. For example, when experiments looking to realize improvements are successful, the system automatically regenerates code for relevant components or subsystems, as well as the documentation and test suites. Although research into automatically identifying technical debt is ongoing, using AI agents continuously allows for managing technical debt proactively rather than accumulating it over the years.

Of course, even systems that don’t change have issues and may experience failures. In this case, fully autonomous systems need the ability to heal themselves and be resilient in the face of failures. When failures occur, the agents adapt in real-time, restoring functionality while also learning from the incident to prevent recurrence. We can imagine a situation where serious system failures initially require human involvement, but the agents learn from that involvement and, over time, can resolve the failures autonomously.

Kaizen AI generators shift the mindset from projects that end to systems that are alive

The benefit of adopting kaizen AI generators is that they create a major improvement in how companies build and operate systems. These systems will experience continuous performance improvements as they can evolve daily. In addition, proactive regeneration of code keeps the codebase fresh, clean and aligned with current needs, reducing technical debt. Third, as long as the system can accurately measure its performance, it can adapt much faster to shifting customer demands, regulatory changes or market shocks, as a change in the ‘reward function’ will automatically lead to the system accelerating its experimentation to improve performance. Finally, the same techniques can be used for autonomous correction and self-healing to improve uptime and reliability. In essence, kaizen AI generators shift the mindset from projects that end to systems that are alive.

As always, the model isn’t without its challenges. One of the major ones is concerned with governance and compliance, as regulators and customers will demand guarantees of safety, traceability and accountability in continuously changing code. A second major concern is goal alignment, as the optimization targets of AI agents must be tightly coupled to business strategy. In our experience, companies struggle significantly in capturing these targets in quantitative terms and often fall into the “worthwhile many” trap. Finally, the approach requires a cultural shift so that the humans in the organization trust the system and the continuous flow of changes and improvements.

Although it’s the highest level of the R&D maturity ladder, this approach requires a set of preconditions not required by earlier steps. First, we need to have monitoring in place to ensure relevant telemetry and observability. Second, we need to see to it that any autonomous experimentation by the system is safe, so we need to start in areas of system functionality that have limited associated risk. The same is the case for core regeneration, where initially we want to focus on non-critical components before broadening. Finally, we need to have guardrails in place, such as compliance checks, audit trails and human-in-the-loop mechanisms, to ensure that the system can be trusted. However, in the end, it requires the organization to adopt an AI-first culture where AI agents are seen as collaborators, rather than tools.

The kaizen AI generator stage represents the culmination of the AI-driven company journey for R&D. This stage is based on the principle that systems should never stand still but continuously adapt and advance. Rather than generating it once and then updating only when it can no longer be avoided, the approach should be for the system to continuously evolve and improve. As we discussed in the context of the three-layer product model in earlier posts, differentiation is continuously eroding and the only way to avoid it is to continuously experiment, improve and evolve. To end with a quote by Daoud Abdel Hadi, “Generative AI is just the beginning; AI agents are what comes next.”

Related content

Becoming an AI-first software-intensive company

Development and operation: different goals and ways to plan work

Top jobs
Events
Courses
Headlines
  • NXP grows in Q4 on industrial and mobile demand, automotive still lags

    3 February 2026
  • TMC strengthens software expertise with Sioux Belgium

    3 February 2026
  • Imec’s NanoIC pilot line launches A14 logic and EDRAM PDKs

    2 February 2026
  • Dutch coalition backs national investment bank and innovation agency

    2 February 2026
  • Report: EU working on mandatory tech joint ventures for foreign investors

    2 February 2026
  • Nexperia parent Wingtech projects 1.3-billion-dollar loss

    2 February 2026
  • Eurocircuits finds strategic capital partner

    2 February 2026
  • Demcon expands electronics expertise with Leap Development acquisition

    29 January 2026
  • Veeco and Imec enable 300mm BTO integration for silicon photonics

    27 January 2026
  • EU expands EuroHPC mandate to encompass AI and quantum tech

    26 January 2026
  • Intel ups tool spending, confirms high-NA at 14A

    23 January 2026
  • Defense investor buys into TNO-UT spinoff Angard to counter drones with RF

    22 January 2026
  • ArcNL and Amolf boost chip metrology with directional light scattering

    22 January 2026
  • European Commission launches EU Inc to simplify cross-border growth

    21 January 2026
  • UT-led P4Q consortium launches to push industrialization of quantum photonics

    21 January 2026
  • Spinnov rises from the Bestronics ashes

    21 January 2026
  • Photondelta launches global €2M photonic chip design contest

    19 January 2026
  • ASM pre-announces Q4 bookings and revenue well ahead of guidance

    19 January 2026
  • Hengelo-based electronics specialist Sintecs joins VDL family

    15 January 2026
  • Chip market could grow or drop 12 percent in 2026, says Future Horizons

    15 January 2026
Bits&Chips logo

Bits&Chips strengthens the high tech ecosystem in the Netherlands and Belgium and makes it healthier by supplying independent knowledge and information.

Bits&Chips focuses on news and trends in embedded systems, electronics, mechatronics and semiconductors. Our coverage revolves around the influence of technology.

Advertising
Subscribe
Events
Contact
High-Tech Systems Magazine (Dutch)
(c) Techwatch bv. All rights reserved. Techwatch reserves the rights to all information on this website (texts, images, videos, sounds), unless otherwise stated.
  • Memberships
  • Advertising
  • Videos
  • Contact
  • Search
Privacy settings

Bits&Chips uses technologies such as functional and analytical cookies to improve the user experience of the website. By consenting to the use of these technologies, we may capture (personal) data, unique identifiers, device and browser data, IP addresses, location data and browsing behavior. Want to know more about how we use your data? Please read our privacy statement.

 

Give permission or set your own preferences

Functional Always active
Functional cookies are necessary for the website to function properly. It is therefore not possible to reject or disable them.
Voorkeuren
De technische opslag of toegang is noodzakelijk voor het legitieme doel voorkeuren op te slaan die niet door de abonnee of gebruiker zijn aangevraagd.
Statistics
Analytical cookies are used to store statistical data. This data is stored and analyzed anonymously to map the use of the website. De technische opslag of toegang die uitsluitend wordt gebruikt voor anonieme statistische doeleinden. Zonder dagvaarding, vrijwillige naleving door je Internet Service Provider, of aanvullende gegevens van een derde partij, kan informatie die alleen voor dit doel wordt opgeslagen of opgehaald gewoonlijk niet worden gebruikt om je te identificeren.
Marketing
Technical storage or access is necessary to create user profiles for sending advertising or to track the user on a site or across sites for similar marketing purposes.
  • Manage options
  • Manage services
  • Manage {vendor_count} vendors
  • Read more about these purposes
View preferences
  • {title}
  • {title}
  • {title}

Your cart (items: 0)

Products in cart

Product Details Total
Subtotal €0.00
Taxes and discounts calculated at checkout.
View my cart
Go to checkout

Your cart is currently empty!

Start shopping